only a mode of flow without a core is possible. These results emerge directly from the properties of the
curves I constructed in the axes o« and B; for the case of grad p=const.

NOTATION

Dimensional quantities: U, velocity of upper plate; A, pressure gradient; 1y, limiting shear stress;
Nps analog of plastic viscosity; m, n, nonlinearity parameters of flow curve; h, channel width; y;, y,, bound-
aries of core; V(y), flow velocity; ¥, shear velocity. Dimensionless quantities: W=V/U,flow velocity; { =
y/, vertical coordinate; ¢y, ¢,, boundaries of core; ¢;, coordinate of the plane in which the shear stress equals

m
zero; 3=T7/Ah, reduced shear stress; a=y,Ui(An)" and p,=tydhr , parameters.
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STABILITY OF OPERATION OF AN APPARATUS CONTAINING
A GRANULAR BED FLUIDIZED BY A GAS STREAM

V. A. Borodulya, P. A, Aref'ev, UDC 532.546
V. I. Kovenskii, and V. V. Zav'yalov

The results of numerical experiments on the investigation of the stability of the fluidization
process relative to finite perturbations and its behavior upon crossing the boundary of sta-
bility are presented.

In [1] the problem of the stability of the fluidization process was formulated in a framework within which
the fluidized bed was considered as a single structureless element with certain operating characteristics, and
the boundary of the region of stability in the space of the parameters of the process was studied in a linear
approximation.

The present report is a continuation of [1]. The stability of the fluidization process relative to finite per-
turbations is demonstrated by a numerical experiment and its behavior upon crossing the boundary of the region
of stability is studied.

In [1] a model of a fluidized bed was proposed which is described by the following equations:

71> mH - mg = k(9 q,) + kg = p* =% 1)

H—H,

g ==q, - pSH -0~ (3)

From the system (1)-(3) we get the equation
‘H - alH - (a, + a3H“2)H -~ a1+ g, =0, 4)
where
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a, = 2(Vmk)™; o, = a, ( é—m + chSklkz) 3 4y = a,pS (b + ky);

a; = 20Hk,/m; ay = — a0y (B -+ ky); a; = ay Img —
—p* -+ P+ (k- B)g, + 0)]; ¢ = M/RT; 0 = 08{Q,— Q) 9, = 05Q,.

Equation (4) has the dimensionless form

3 N g2
d_z__A<_1__H@_)‘_i~z_ _i_Aan{

dx? v 2 ]dx?
1 A 1) .
ANy A 23+(1+-)(CTAND)]:O, )
vz v n
where
1
2= i; x:(’[L)Zt: Vo= 'ff?ov(Qb—Qo)! A“— (_]{_x)Z Vs
H, f, Hi g
k0
3,2(1— P ’L) .C—2 R . p_HyH,
mg mg
= ZpSkl, n=~Rk/k;; v=vckV.
v

We note that N, n, and v are the dimensionless complexes which determine the boundary of the region of
stability in [1].

Equation (5) was solved on a computer by the Runge —Kutta method with an accuracy of 10-°. The printer
put out the current values of x and z and the graph z=z(x). The structural and operating parameters of two
installations (laboratory and industrial), in which a transition from nonuniform fluidization to a self-oscillating
mode of fluidization has been observed, were used for the calculation. The numerical values of the parameters
are presented below (here and later the quantities pertaining to the industrial installation are given in brackets):

m = 225 [60]kg/m?, H, = 0,217[0.118] m, k, = 387597 [110]1/m - sec,
p = 1.29[1.29]kg/m?*, &, == 3875.97 [5.02]1/m " sec, Q, =
= 0.533 [3.822] m/sec, S = 0.01 [36] m? Q, = 0.05{0.65]m/sec,
Hy,=0.15]0.085]m, p* — p® = 3217.25[8814.55] N/m?.
The parameter V (the volume of the chamber below the grid) and accordingly the dimensionless volume v were
varied in the calculations.

It was shown in [1] that the steady mode of fluidization is unstable (stable) relative to small perturbations
if v lies inside (outside) the interval (v, v;), where v, and v, are determined by Eq. (15) in [1] and depend on N
and n. In the calculated variants v, and v, have the following values: wv;=1.435[1.921]; v,=243.865 [29.833].

Let us examine the behavior of the solution of Eq. (5) when v lies outside the interval {vy, v,), i.e., in the
region of stability. It turned out that the steady mode of fluidization
ANl +n
7 = . (6)
9B -+ (1 + ~> (C & AND)
n

is also stable relative to finite perturbations. Here the solution of (5) converges to z, the faster, the farther v
is from the boundary of the interval (vy, v;). The dependence of the dimensionless time x of establishment of
an oscillation amplitude of 0.05z« on the dimensionless volume v under the same initial conditions is presented
in Fig. 1.

The behavior of the solution of Eq. (5) in the region of stability is shown in Fig. 2.

It is seen from Figs. 1 and 2 that operation of the fluidization process near the boundaries of the interval
of instability (v, v,) leads to prolonged damped oscillations upon a random departure from the steady mode z, .
If such oscillations are undesirable, then a shift of the process farther from the boundaries of (v, v,) allows
one to avoid them. The process can be shifted, for example, by making the volume V of the chamber below the
grid smaller or larger [depending on whether our value of v is located to the left or right of (v{, vy)].

Upon crossing the boundary of the region of stability the breakdown of stability occurs, as suggested in
[1], in a "mild" fashion. When v lies in the interval (vy, v,) the amplitude of the oscillations increases monoton-
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Fig. 1. Dependence of dimensionless time x of establishment of a steady
state on the dimensionless volume v.

Fig. 2. Behavior of the solution of Eq. (5) in the region of stability: 1) v=
0.718; 2) v=1.108.
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Fig. 3. Comparison of the oscillation frequency of a fluidized bed
obtained from Eq. (56) (curves 1) and from the linearized system
(1)-(3) {curves 2) as a function of v: a) for the laboratory instal-
lation and b) for the industrial installation.

ically to infinity the faster, the closer v is to the center of the interval (v, v)). The orderly periodic oscillatory
mode of fluidization shown in Fig. 4a in [1] is established only when v=v, or v=v,.

The oscillation frequencies of a fluidized bed as a function of v were calculated from the linearized sys-
tem (1)-(3) and from Eq. (5). The results are shown in Fig. 3.

The frequency difference does not exceed 11 [23]% and decreases near the ends of the interval (v, vo).
From the linearized system (1)~(3) the equation for calculating the frequency has the form

, . 1
o 2 Attt )T o
mk,cV

The solution of Eq. (5) in the region of instability (vy, v;) can be taken as correct up to the dimensionless
time x, when z becomes equal to z;=Hy/Hx, where Hy is the height of the bed in the motionless state. Then Eq.
(5) no longer describes the physical process of fluidization. In this case the relaxation oscillations shown
schematically in Fig. 4b in [1] are established.

The numerical analysis of the behavior of the solution of Eq. (5) showed that the model proposed in [1]}
gives a fully satisfactory criterion for the stability (instability) of operation of an apparatus containing a
fluidized bed relative to finite perturbations, and also allows one to obtain the frequency of the oscillations and
to estimate the damping decrement upon a perturbation of the steady mode zx.

NOTATION

H, bed height; Hy, Hx, bed heights in motionless and steady fluidized states; g, free-fall acceleration; ki,
ky, coefficients of resistance of gas-supply system and gas-distributing device, respectively; M, molecular
weight of gas; m, mass of bed per unit cross-sectional area; p*, p’, pressure at inlet and outlet of apparatus;
Qs Qp, minimum fluidization velocity and average velocity of gas in the bubble phase; q, qy, total mass-flow
rates of gas supplied to the bed and to the free cavity; R, gas constant; S, cross-sectional area of bed; V,
volume of cavity below gas-distributing grid accessible to the gas; p, gas density; T, absolute temperature; c,
oy dgs Parameters introduced into (4); t, time; z, dimensionless bed height; x, dimensionless time; A,B,C,D,
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N, n, dimensionless complexes introduced into (5); v, dimensionless volume; v, parameter introduced into (5);
zx, dimensionless bed height in steady fluidized state; w, circular frequency.
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EXACT SOLUTION OF COMBINED HEAT- AND MASS-TRANSFER
PROBLEM DURING FILM ABSORPTION

N. I. Grigor'eva and V. E. Nakoryakov UDC 536.248.2

Exact solutions of the system of equations of heat and mass transfer accompanying absorption
of vapor by a liquid film are obtained. Expressions for the main characteristics of heat and
mass transfer are obtained.

Numerous processes used in chemistry, refrigeration, etc. entail the absorption of vapor by a liquid
solution. A characteristic feature of such processes is the combined transfer of heat and absorbate in the
liquid. In practical engineering calculations, however, heat- and mass~transfer processes are usually con-
sidered separately.

In the present paper we use a simple model to investigate the mutual effect of heat transfer and diffusion
processes during absorption by a film.

The treatment of the problem of combined heat and mass transfer during absorption of a pure (with no
admixture of gas) vapor by a film of solution flowing down a vertical wall is based on the following assump-
tions:

1) the wall is isothermal and impermeable for the absorbed substance;

2) the film thickness § is constant;

3) the flow of liquid is laminar;

4) at the liquid—vapor interface the "absorbate—liquid solution® system is in a state of saturation;
5) wave processes in the liquid do not affect heat oi‘ mass transfer;

6) all the physical parameters of the problem (thermal diffusivity, diffusion coefficient etc.) are constant
in the considered ranges of temperature and pressure.

As a model representing the state of saturation we select a linear relation between the concentration and
temperature

C=dT +b.
The coefficients d and b are determined by the vapor pressure. We introduce a Cartesian coordinate system
(x', vV, whose x' axis coincides in direction with the velocity v of liquid in the film and whose coordinate
origin lies on the solid wall. We assume that in the cross section x'=0 the liquid temperature T, and concen~
tration Cy are constant over the cross section, and C; is less than the saturation value corresponding to
temperature Ty, i.e., Cyj<dTy+b.

We solve the problem on the assumption that v=const. In dimensionless form the system of equations
representing heat and mass transfer in the film and the boundary conditions are as follows:
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